Rho-dependent transcription termination in the tna operon of Escherichia coli: roles of the boxA sequence and the rut site.

نویسندگان

  • K V Konan
  • C Yanofsky
چکیده

Expression of the tryptophanase (tna) operon of Escherichia coli is regulated by catabolite repression and by tryptophan-induced transcription antitermination. Tryptophan induction prevents Rho-dependent transcription termination in the leader region of the operon. Induction requires translation of a 24-residue leader peptide-coding region, tnaC, containing a single, crucial Trp codon. Studies with a lacZ reporter construct lacking the tnaC-tnaA spacer region suggest that, in the presence of excess tryptophan, the TnaC leader peptide acts in cis on the ribosome translating tnaC to inhibit its release. The stalled ribosome is thought to block Rho's access to the transcript. In this paper we examine the roles of the boxA sequence and the rut site in Rho-dependent termination. Deleting six nucleotides (CGC CCT) of boxA or introducing specific point mutations in boxA results in high-level constitutive expression. Some constitutive changes introduced in boxA do not change the TnaC peptide sequence. We confirm that deletion of the rut site results in constitutive expression. We also demonstrate that, in each constitutive construct, replacement of the tnaC start codon by a UAG stop codon reduces expression significantly, suggesting that constitutive expression requires translation of the tnaC coding sequence. Addition of bicyclomycin, an inhibitor of Rho, to these UAG constructs increases expression, demonstrating that reduced expression is due to Rho action. Combining a boxA point mutation with rut site deletion results in constitutive expression comparable to that of a maximally induced operon. These results support the hypothesis that in the presence of tryptophan the ribosome translating tnaC blocks Rho's access to the boxA and rut sites, thereby preventing transcription termination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for transcription antitermination control of tryptophanase operon expression in Escherichia coli K-12.

Tryptophanase, encoded by the gene tnaA, is a catabolic enzyme distinct from the enzymes of tryptophan biosynthesis. Tryptophanase synthesis is induced by tryptophan and is subject to catabolite repression. We studied the mechanism of tna operon induction. Mutants with altered rho factor were partially constitutive for tna expression, implicating rho-dependent transcription termination in the c...

متن کامل

Characterization of the detachable Rho-dependent transcription terminator of the fimE gene in Escherichia coli K-12.

The fim genetic switch in the chromosome of Escherichia coli K-12 is an invertible DNA element that harbors the promoter for transcription of the downstream fim structural genes and a transcription terminator that acts on the upstream fimE regulatory gene. Switches oriented appropriately for structural gene transcription also allow fimE mRNA to read through, whereas those in the opposite orient...

متن کامل

Evidence suggesting cis action by the TnaC leader peptide in regulating transcription attenuation in the tryptophanase operon of Escherichia coli.

Expression of the tryptophanase (tna) operon in Escherichia coli is regulated by catabolite repression and transcription attenuation. Elevated levels of tryptophan induce transcription antitermination at one or more Rho factor-dependent termination sites in the leader region of the operon. Induction requires translation of a 24-residue coding region, tnaC, located in the 319-nucleotide transcri...

متن کامل

Redundancy of primary RNA-binding functions of the bacterial transcription terminator Rho

The bacterial transcription terminator, Rho, terminates transcription at half of the operons. According to the classical model derived from in vitro assays on a few terminators, Rho is recruited to the transcription elongation complex (EC) by recognizing specific sites (rut) on the nascent RNA. Here, we explored the mode of in vivo recruitment process of Rho. We show that sequence specific reco...

متن کامل

Characterization of the tryptophanase operon of Proteus vulgaris. Cloning, nucleotide sequence, amino acid homology, and in vitro synthesis of the leader peptide and regulatory analysis.

The tryptophanase (tna) operon of Proteus vulgaris was cloned and characterized and found to be organized similarly to the tna operon of Escherichia coli. Both operons contain two major structural genes, tnaA and tnaB, that encode tryptophanase and a tryptophan permease, respectively. tnaA of P. vulgaris is preceded by a transcribed leader region, encoding a 34-residue leader peptide, TnaC, tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 182 14  شماره 

صفحات  -

تاریخ انتشار 2000